Code Section Link to heading

1. Program Link to heading

GitHub Source

2. Issues Link to heading

Conda installation process:

  1. Downloading the CUDA version of PyTorch results in the CPU version.

    Reference Link

  2. Undefined symbol: iJIT_NotifyEvent Cause: Likely due to incompatibility between Docker container and conda environment. Error: libtorch_cpu.so: undefined symbol: iJIT_NotifyEvent, Solution: Try running pip install mkl==2024.0

3. Notes Link to heading

Official Link

Reference Link

4. Local Reproduction Link to heading

  1. Create your own dataset:

    Requirements: colmap and ffmpeg

  2. Conda run:

    If Conda lacks libgl (due to running in Docker container), install libgl:

    conda install -c conda-forge libgl
    
  3. Visualize with SIBR_viewers

     # Dependencies
     sudo apt install -y libglew-dev libassimp-dev libboost-all-dev libgtk-3-dev libopencv-dev libglfw3-dev libavdevice-dev libavcodec-dev libeigen3-dev libxxf86vm-dev libembree-dev
    
     # Project setup
     cd SIBR_viewers
     git checkout fossa_compatibility # Only needed for Ubuntu 22.04
     cmake -Bbuild . -DCMAKE_BUILD_TYPE=Release # Add -G Ninja to build faster
     cmake --build build -j24 --target install
    
     # Run
     ./install/bin/SIBR_gaussianViewer_app -m ../output/water_bottle/
    

    For visualization inside Conda, there may be an x11 error:

    [SIBR] ##  ERROR  ##:   FILE /workspace/gaussian-splatting/SIBR_viewers/src/core/graphics/Window.cpp
                            LINE 30, FUNC glfwErrorCallback
                            GLX: Failed to create context: GLXBadFBConfig
    

    Solution: a. On host machine

    glxinfo| grep OpenGL #Check OpenGL core profile version string' = 4.6
    

    b. Inside Docker container:

    export MESA_GL_VERSION_OVERRIDE=4.6
    

    c. Run again inside Docker:

    ./install/bin/SIBR_gaussianViewer_app -m ../output/water_bottle/
    

    Reference Link

  4. Local Data Test

    Original data video captured on phone:

    SIBR: